Postmortem Committee Literature
Interpretation
- Belsey SL, Flanagan RJ. Postmortem biochemistry: Current applications. Journal of Forensic and Legal Medicine. 41:49-57 (2016). https://doi.org/10.1016/j.jflm.2016.04.011
- Bevalot F. et al. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicology. 34:12-40 (2016). https://doi.org/10.1007/s11419-015-0294-5
- Butzbach DM. The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Science Medicine and Pathology. 6(1):35-45 (2010). https://doi.org/10.1007/s12024-009-9130-8
- Coe JI. Postmortem Chemistry Update. Emphasis on Forensic Application. The American Journal of Forensic Medicine and Pathology. 14(2):91-117 (1993). https://doi.org/10.1097/00000433-199306000-00001
- Drummer OH, Gerostamoulos D. Post-mortem redistribution of drugs and other factors affecting interpretation: A review. WIREs Forensic Science. 5(3), el480 (2022). https://doi.org/10.1002/wfs2.1480
- Flanagan RJ. Interpretation of postmortem toxicology: more complicated than it might seem - Part 2. Adverse Drug Reaction Bulletin. 250:959-962 (2008). https://doi.org/10.1097/FAD.0b013e32830ceb2e
- Hansen SL et al. Suitability of cardiac blood, brain tissue, and muscle tissue and alternative matrices for toxicological evaluation in postmortem cases. Drug Testing and Analysis. 15(5): 529-538 (2023). https://doi.org/10.1002/dta.3439
- Jones AW, Holmgren A. Concentration distributions of the drugs most frequently identified in post-mortem femoral blood representing all causes of death. Medicine, Science, and the Law. 49(4):257-273 (2009). https://doi.org/10.1258/rsmmsl.49.4.257
- Jones AW et al. Relationship Between Postmortem Urine and Blood Concentrations of GHB Furnishes Useful Information to Help Interpret Drug Intoxication Deaths. Journal of Analytical Toxicology. 42(9):587-591 (2018). https://doi.org/10.1093/jat/bky041
- Kacinko SL et al. Are postmortem cannabinoid concentrations forensically reliable? American Journal of Forensic Medicine and Pathology. Letter to the Editor. 45(1):92-93(2024). https://doi.org/10.1097/paf.0000000000000887
- Kennedy MC. Post-mortem drug concentrations. Internal Medicine Journal. 40(3):183-187 (2010). https://doi.org/10.1111/j.1445-5994.2009.02111.x
- Ketola RA, Kriikku P. Drug concentrations in post-mortem specimens. Drug Testing and Analysis. 11(9):1338-1357 (2019). https://doi.org/10.1002/dta.2662
- Ketola RA, Ojanpera I. Summary statistics for drug concentrations in post-mortem femoral blood representing all causes of death. Drug Testing and Analysis. 11(9):1326-1337 (2019). https://doi.org/10.1002/dta.2655
- Launiainen T, Ojanpera I. Drug concentrations in post-mortem femoral blood compared with therapeutic concentrations in plasma. Drug Testing and Analysis. 6(4):308-316 (2014). https://doi.org/10.1002/dta.1507
- Lemos NP, Ingle EA. Cannabinoids in Postmortem Toxicology. Journal of Analytical Toxicology. 35(7):394-401 (2011). https://doi.org/10.1093/anatox/35.7.394
- Maskell PD. Just say no to postmortem drug dose calculations. Journal of Forensic Sciences. 66(5):1862-1870 (2021). https://doi.org/10.1111/1556-4029.14801
- Molina DK, Hargrove VM. Should Postmortem Subclavian Blood be Considered a Peripheral or Central Sample?American Journal of Forensic Medicine and Pathology. 34(2):155-158 (2013). https://doi.org/10.1097/PAF.0b013e318288b0d5
- Olds ML, Jones AW. Preanalytical factors influencing the results of ethanol analysis in postmortem specimens. Journal of Analytical Toxicology. 48: 9-26 (2024). https://doi.org/10.1093/jat/bkad078
- Penetar DM et al. Comparison among plasma, serum, and whole blood ethanol concentrations: impact of storage conditions and collection tubes. Journal of Analytical Toxicology. 32(7):505-510 (2008). https://doi.org/10.1093/jat/32.7.505
- Schulz M et al. Revisited: Therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Critical Care. 24(1):195 (2020). https://doi.org/10.1186/s13054-020-02915-5
- Skopp G. Postmortem toxicology. Forensic Science, Medicine, and Pathology. 6(4):314-325 (2010). https://doi.org/10.1007/s12024-010-9150-4
- Soderberg C et al. The importance of sample size with regard to the robustness of postmortem reference values. Forensic Science International. 311:110292 (2020). https://doi.org/10.1016/j.forsciint.2020.110292
- Wille SMR, Elliott S. The Future of Analytical and Interpretative Toxicology: Where are We Going and How Do We Get There? Journal of Analytical Toxicology. 45(7):619-632 (2021). https://doi.org/10.1093/jat/bkaa133
Postmortem Redistribution
Methodology
- Allen D, McWhinney BC. Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. The Clinical Biochemist Reviews. 40(3):135-146 (2019). https://doi.org/10.33176/AACB-19-00023
- Ayala J, Kerrigan S. Comprehensive toxicological screening of common drugs of abuse, new psychoactive substances and cannabinoids in blood using supported liquid extraction and liquid chromatography-quadrupole time-of-flight mass spectrometry. Journal of Analytical Toxicology. 47(8): 656-667 (2023). https://doi.org/10.1093/jat/bkad069
- Diekhans K, Yu J, Farley M, Rodda LN. Analysis of over 250 novel synthetic opioids and xylazine by LC-MS-MS in blood and urine. Journal of Analytical Toxicology. 48(3): 150-164 (2024). https://doi.org/10.1093/jat/bkae009
- Dziadosz M et al. LC-MS/MS screening strategy for cannabinoids, opiates, amphetamines, cocaine, benzodiazepines and methadone in human serum, urine and post-mortem blood as an effective alternative to immunoassay based methods applied in forensic toxicology for preliminary examination. Forensic Chemistry. 7:33-37 (2018). https://doi.org/10.1016/j.forc.2017.12.007
- Farley M et al. A Single Method for 127 Recommended and Additional DUID Drugs in Blood and Urine by LC-MS/MS. Journal of Analytical Toxicology. 46(6):658-669 (2022). https://doi.org/10.1093/jat/bkab075
- Gevorkyan J et al. Method Consolidation to Improve Scope and Efficiency in Postmortem Toxicology. Journal of Analytical Toxicology. 44(5):422-439 (2020). https://doi.org/10.1093/jat/bkaa003
- Giorgetti A et al. Development and validation of a rapid LC-MS/MS method for the detection of 182 novel psychoactive substances in whole blood. Drug Testing and Analysis. 14(2):202-223 (2021). https://doi.org/10.1002/dta.3170
- Heinsvig PJ, Noble C, Dalsgaard PW, Mardal M. Forensic drug screening by liquid chromatography hyphenated with high-resolution mass spectrometry (LC-HRMS). Trends in Analytical Chemistry. 162: 117023 (2023). https://doi.org/10.1016/j.trac.2023.117023
- Partridge E et al. A validated method for the screening of 320 forensically significant compounds in blood by LC/QTOF, with simultaneous quantification of selected compounds. Journal of Analytical Toxicology. 42(4):220-231 (2018). https://doi.org/10.1093/jat/bkx108
- Rodda LN, Farley M, Towler S, Devincenzi T, Pearring S. Multi-class analysis of 57 drugs quantitatively in blood and qualitatively in urine by LC-MS/MS to complement comprehensive DFC, DUID, and postmortem testing. Journal of Analytical Toxicology. 49(1):1-13 (2024). https://doi.org/10.1093/jat/bkae077
- Sofalvi S et al. Development and validation of an LC-MS-MS method for the detection of 40 benzodiazepines and three z-drugs in blood and urine by solid-phase extraction. Journal of Analytical Toxicology. 44(7):708-717 (2020). https://doi.org/10.1093/jat/bkaa072
- Sofalvi S et al. Unique structural/stereo-isomer and isobar analysis of novel fentanyl analogues in postmortem DUID whole blood by UHPLC-MS-MS. Journal of Analytical Toxicology. 43(9):673-687 (2019). https://doi.org/10.1093/jat/bkz056
- Stephenson JB et al. Comprehensive drug screening of whole blood by LC-HRMS-MS in a forensic laboratory. Journal of Analytical Toxicology. 45(3):243-251 (2021). https://doi.org/10.1093/jat/bkaa073
- Zilg G, Alkass K, Kronstrand R, Berg S, Druid H. A rapid method for postmortem vitreous chemistry – Deadside analysis. Biomolecules. 12(1):32 (2021). https://doi.org/10.3390/biom12010032
|